NUMERICAL TO DETERMINE NORMAL THRUST AND RADIAL SHEAR
FOR A THREE HINGED PARABOLIC ARCH
A
three hinged parabolic arch of span 20m and rise 5m carries a uniformly
distributed
load of 20KN/m for entire left half of the span and a point load of
120KN at 5m from
right support .Determine normal thrust and radial shear for
the arch at section 4m from left span.
Step
1:
Applying
vertical equilibrium condition for the arch
V
a + V b = 20(10) +120 = 320KN….. (1)
Taking
moment about support A
V
b (20) –120 (15) -20(10) (5) = 0….. (2)
Solving
Eq 2
V
b= 140KN
Substitute
the value of V b in Eq 1
V
a= 180KN
Taking
moment about Crown C
V
a (10) -20(10) (5)-H (5) = 0
180
(10) -20(10) (5)-H (5) = 0…….. (3)
Solving
the above equation
H
= 160KN
Step
2:
Determining
the moment about the section 4m from left support
M
d = V a (4) – 20(4) (2) – H (y d) ……… (4)
Determining
the value of vertical distance y
W
k t
y
= 4hx (L-x)/L2 ………. (5)
y
d = 4(5)(4) (20-4)/202
y
d = 3.2m
Substituting
the value of y d in Eq (4)
M
d = 140 (4) – 20(4) (2) – 160 (3.2)
M
d = 48KN-m
Step
3:
Determining
the normal thrust and radial shear
Differentiate
the Eq (5) wrt x
dy/dx =tan Ꝋ= 4h (L-2x)/L2
tan Ꝋ = 4(5) (20-2(4))/202
tan Ꝋ = 3/5
Sin
Ꝋ = 3/√ {(3)2 + (5)2} = 3/√ 34
Cos
Ꝋ = 5/ √ 34
Normal thrust at D = Pn
= Hd Cos Ꝋ +Vd Sin Ꝋ
Where,
Hd = Total
horizontal force at section D
Vd = Total vertical
force at section D
Vd = V a –
20(4)
Vd = 180 – 80
Vd = 100KN
Hd = 160KN
Pn = Hd
(5/ √ 34) +Vd Sin Ꝋ
Pn = 160(5/ √ 34) +
100 (3/ √ 34)
Pn = 188.65KN
Radial Shear at D = Sd
= Hd Sin Ꝋ -Vd Cos Ꝋ
Sd = 160(3/ √ 34)- 100((5/ √ 34)
Sd
= -3.43KN
No comments:
Post a Comment